本文共 10462 字,大约阅读时间需要 34 分钟。
详细内容可以参考[1]。这里单纯列举出相关的代码示例:
// 使用继承的方式实现不同图形的绘制class Shape{public: Shape() {} virtual ~Shape() {} virtual void Draw() = 0;};class Triangle : public Shape{public: Triangle() {} ~Triangle() {} void Draw() { cout << "Draw a Triangle" << endl; }};class Rectangle : public Shape{public: Rectangle() {} ~Rectangle() {} void Draw() { cout << "Draw a Rectangle" << endl; }};// 利用Curiously Recurring Template Patterntemplateclass Shape{public: void Draw() { return static_cast (this)->Draw(); }}; class Triangle : public Shape {public: void Draw() { cout << "Draw a Triangle" << endl; }}; class Rectangle : public Shape {public: void Draw() { cout << "Draw a Rectangle" << endl; }};
通过Kernel需要解决的主要问题是代码的适配性和可扩展性。那为什么可以提高适配性和可扩展性可以在后续的内容中得到答案。
常见的数据结构和算法的设计,数据结构为独立的类,算法为全局或类的成员函数。示例如下:
K::Point_2 p(0,1), q(1,-4); // 数据结构K::Line_2 line(p,q);if (less_xy_2(p, q)) { ... } // 算法成员函数
几何Kernel包含需要操作的类型,以及针对这些类型的操作。Kernel会将上述相关的内容进行打包处理。示例如下:
K k;K::Construct_line_2 c_line = k.construct_line_2_object();K::Less_xy_2 less_xy = k.less_xy_2_object();K::Point_2 p(0,1), q(1,-4);K::Line_2 line = c_line(p, q);if (less_xy(p, q)) { ... }
Kernel将数据结构和算法相关的细节放到了内部。整体的架构可以分为三层,Kernel, Geometric Primitives,Numeric Primitives,具体如下:
templatestruct MyPoint { };template struct MyLine { };template struct MyConstruct { };template struct MyLess { };struct Kernel { typedef MyPoint Point_2; typedef MyLine Line_2; typedef MyConstruct Construct_line_2; typedef MyLess Less_xy_2;};// Generate new Kerneltemplate struct NewPoint { };template struct MyLeftTurn { };struct New_kernel : public Kernel { typedef NewPoint Point_2; typedef MyLeftTurn Left_turn_2;};int main(){ New_kernel::Point_2 p, q; New_kernel::Construct_line_2 construct_line_2; New_kernel::Line_2 l = construct_line_2(p, q); return 0;}
测试环境可以见:
编译错误为:
prog.cpp: In function ‘int main()’:prog.cpp:28:49: error: no match for call to ‘(Kernel::Construct_line_2 {aka MyConstruct}) (New_kernel::Point_2&, New_kernel::Point_2&)’ New_kernel::Line_2 l = construct_line_2(p, q);
从编译错误中可见,New_kernel::Construct_line_2
其实调用的是MyConstruct<Kernel>
的实现,而我们想要的调用是MyConstruct<New_kernel>
。依赖关系见下图:
这个版本中另一个隐含的问题是,循环引用的问题,具体如下:
templatestruct P { typedef K::A B;};struct Kernel { typedef P ::B B; typedef int A;};
为了解决上面的问题,进行了第二版本的改进。
为了降低不同Kernel之间的关联性,引入Kernel_base,具体如下:
templatestruct MyPoint { };template struct MyLine { };template struct MyConstruct { };template struct MyLess { };template struct Kernel_base { typedef MyPoint Point_2; typedef MyLine Line_2; typedef MyConstruct Construct_line_2; typedef MyLess Less_xy_2;};struct Kernel : public Kernel_base { };// Generate new Kerneltemplate struct NewPoint { };template struct MyLeftTurn { };template struct New_kernel_base : public Kernel_base { typedef NewPoint Point_2; typedef MyLeftTurn Left_turn_2;};struct New_kernel : public New_kernel_base {};int main(){ New_kernel::Point_2 p, q; New_kernel::Construct_line_2 construct_line_2; New_kernel::Line_2 l = construct_line_2(p, q); return 0;}
测试环境可以见:
编译错误如下:
prog.cpp: In function ‘int main()’:prog.cpp:35:49: error: no match for call to ‘(Kernel_base::Construct_line_2 {aka MyConstruct }) (New_kernel_base ::Point_2&, New_kernel_base ::Point_2&)’ New_kernel::Line_2 l = construct_line_2(p, q); ^
从编译结果中可得,Construct_line_2对应的New_kernel正是我们所预期的。接下来需要解决的问题是,construct_line_2并不是可以调用的函数。调整后kernel之间的依赖关系如下:
该版本中,利用函数对象来处理操作逻辑。
templatestruct MyPoint { };template struct MyLine { };template struct MyConstruct { typedef typename K::Line_2 Line_2; typedef typename K::Point_2 Point_2; Line_2 operator() (Point_2, Point_2) const { return Line_2(); }};template struct MyLess { typedef typename K::Point_2 Point_2; bool operator() (Point_2, Point_2) const { return true; }};template struct Kernel_base { typedef MyPoint Point_2; typedef MyLine Line_2; typedef MyConstruct Construct_line_2; typedef MyLess Less_xy_2; Construct_line_2 construct_line_2_object(); Less_xy_2 less_xy_2_object();};struct Kernel : public Kernel_base { };// Generate new Kerneltemplate struct NewPoint { };template struct MyLeftTurn { };template struct New_kernel_base : public Kernel_base { typedef NewPoint Point_2; typedef MyLeftTurn Left_turn_2;};struct New_kernel : public New_kernel_base {};int main(){ New_kernel::Point_2 p, q; New_kernel::Construct_line_2 construct_line_2; New_kernel::Line_2 l = construct_line_2(p, q); return 0;}
示例程序见:
整个编译过程成功通过。
到此处,整个kernel的结构基本完善了。
以2D点集凸包计算的实现来举例:
// 暴露给外部调用的接口templateinlineOutputIteratorch_graham_andrew( InputIterator first, InputIterator last, OutputIterator result){ typedef std::iterator_traits ITraits; typedef typename ITraits::value_type value_type; typedef CGAL::Kernel_traits KTraits; // 根据value_type获取KernelTraits typedef typename KTraits::Kernel Kernel; // 进一步获取Kernel return ch_graham_andrew(first, last, result, Kernel()); // 传入Kernel,调用具体实现}// 具体实现template OutputIteratorch_graham_andrew( InputIterator first, InputIterator last, OutputIterator result, const Traits& ch_traits){ typedef typename Traits::Point_2 Point_2; // 获取Kernel中的类型 typedef typename Traits::Equal_2 Equal_2; // 获取Kernel中的类型 Equal_2 equal_points = ch_traits.equal_2_object(); // 获取kernel中的算法 if (first == last) return result; std::vector< Point_2 > V (first, last); std::sort( V.begin(), V.end(), ch_traits.less_xy_2_object() ); // 获取Kernel中的算法 if (equal_points( *(V.begin()), *(V.rbegin())) ) { *result++ = *(V.begin()); return result; } #if defined(CGAL_CH_NO_POSTCONDITIONS) || defined(CGAL_NO_POSTCONDITIONS) \ || defined(NDEBUG) OutputIterator res(result); #else Tee_for_output_iterator res(result); #endif // no postconditions ... ch__ref_graham_andrew_scan( V.begin(), V.end(), res, ch_traits); ch__ref_graham_andrew_scan( V.rbegin(), V.rend(), res, ch_traits); CGAL_ch_postcondition( \ is_ccw_strongly_convex_2( res.output_so_far_begin(), \ res.output_so_far_end(), \ ch_traits)); CGAL_ch_expensive_postcondition( \ ch_brute_force_check_2( \ V.begin(), V.end(), \ res.output_so_far_begin(), res.output_so_far_end(), \ ch_traits)); #if defined(CGAL_CH_NO_POSTCONDITIONS) || defined(CGAL_NO_POSTCONDITIONS) \ || defined(NDEBUG) return res; #else return res.to_output_iterator(); #endif // no postconditions ...}
从上面简单的示例可得,一般在算法构建的时候会在最外层生成调用接口,然后,在具体实现中,通过分别对Kernel中的数据结构和算法的调用,最后组装成一个完整的算法实现。
此处将文章最后的示例代码贴出来,用于进一步完善对Kernel的认知。
//------------------------------------------------------------// bottom layer: number type based function toolbox//templateFT determinant2x2(FT a00, FT a01, FT a10, FT a11){ return a00*a11 - a10*a01;}template void line_from_pointsC2(FT px, FT py, FT qx, FT qy, FT &a, FT &b, FT &c) {}//------------------------------------------------------------// mid layer: representations, predicates and constructions//template struct Point_2 { typedef K_ K; typedef typename K::FT FT; Point_2() {} Point_2(FT x_, FT y_) : x(x_), y(y_) {} FT x, y;};template struct Line_2 { typedef K_ K; typedef typename K::Point_2 Point_2; Line_2() {} Line_2(Point_2 p, Point_2 q) { *this = K::Construct_line_2(p,q); } typename K::FT a, b, c;};template struct Segment_2 { typedef K_ K; typename K::Point_2 s, e;};template struct Less_xy_2 { typedef typename K_::Point_2 Point_2; bool operator()(Point_2 p, Point_2 q) const { return p.x < q.x || p.x == q.x && p.y < q.y; }};template struct Left_turn_2 { typedef typename K_::Point_2 Point_2; bool operator()(Point_2 p, Point_2 q, Point_2 r) const { return determinant2x2(q.x - p.x, q.y - p.y, r.x - p.x, r.y - q.y) > 0; }};template struct Construct_line_2 { typedef typename K_::Point_2 Point_2; typedef typename K_::Line_2 Line_2; Line_2 operator()(Point_2 p, Point_2 q) const { Line_2 l; Line_from_pointsC2(p.x, p.y, q.x, q.y, l.a, l.b, l.c); return l; }};//------------------------------------------------------------// top layer: geometric kernel//template struct Kernel_bae { typedef K_ K; typedef FT_ FT; typedef Point_2 Point_2; typedef Line_2 Line_2; typedef Segment_2 Segment_2; typedef Less_xy_2 Less_xy_2; typedef Left_turn_2 Left_turn_2; typedef Construct_line_2 Construct_line_2; Less_xy_2 less_xy_2_object() const { return Less_xy_2(); } Left_turn_2 Left_turn_2_object() const { return Left_turn_2(); } Construct_line_2 construct_line_2_object() const { return Construct_line_2(); }};template struct Kernel : public Kernel_base , FT_>{};//------------------------------------------------------------// convenience layer: global functions//template < class K >inlineboolless_xy_2(typename K::Point_2 p,typename K::Point_2 q, K k = K()){ returnk.less_xy_2_object()(p, q); }template < class K >inlineboolleft_turn_2(typenameK::Point_2 p, typenameK::Point_2 q, typenameK::Point_2 r, K k = K()){ returnk.left_turn_2_object()(p, q, r); }//------------------------------------------------------------// enve more convenience: specializations for kernel//template < class FT > inlineboolleft_turn_2(Point_2< Kernel< FT > > p, Point_2< Kernel< FT > > q, Point_2< Kernel< FT > > r){ returnleft_turn_2(p, q, r, Kernel< FT >()); }template < class FT >inlineboolless_xy_2(Point_2< Kernel< FT > > p, Point_2< Kernel< FT > > q){ returnless_xy_2(p, q, Kernel< FT >()); }
转载地址:http://ykvuz.baihongyu.com/